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Abstract. Smoluchowski’s coagulation equation, with reaction rateK(x, y), describing the
time evolution of a size distributionc(x, t) is studied in the presence of a mass loss term
m(x) = mx(m > 0). For K(x, y) = 1, c(x, t) is determined explicitly for arbitrary initial
distributions. IfK(x, y) = xy, we determinec(x, t) explicitly for arbitrary initial distributions
and describe the behaviour ofc(x, t) for large x, for all times. Here, we show that a phase
transition occurs in a finite timetg = −(1/2m) loge(1− 2m) providedm < 1

2 . An investigation
into K(x, y) = (xy)ω reveals that a phase transition occurs in a finite timetg if and only if
1
2 < ω 6 1 andm < 1

2 . An estimate of the least upper bound fortg is calculated, and the
behaviour ofc(x, t) for largex with t > tg is presented.

1. Introduction

Coagulation is very important in a wide variety of physical, chemical and biological
processes. Consequently, an understanding of its kinetics is of great interest in many
problems ranging from colloidal polymer technology [1] to antigen–antibody aggregation
[2] and cluster formation in galaxies [3].

Smoluchowski’s equation for rapid coagulation describes the temporal evolution of a
system of particles which are continuously growing as a result of pairs of particles coming
into contact and adhering or bonding to form clusters. Examples include the coagulation of
aerosols and colloidal suspensions, and the formation of polymers. Such systems may, in
general, be described by the kinetic equation

∂

∂t
c(x, t) = 1

2

∫ x

0
dy K(y, x − y)c(y, t)c(x − y, t)− c(x, t)

∫ ∞

0
dy K(x, y)c(y, t) (1.1)

wherec(x, t) represents the concentration of particles of sizex at time t , andK(x, y) is
the rate at which particles of sizex andy coagulate to form a particle of size(x + y).

For sufficiently high coagulation rates the solution of (1.1) describes a phase transition
(gelation), signalled by the divergence of some moment of the size distributionc(x, t) at a
definite (critical) point. This occurs whenK(x, y) = (xy)ω if and only if 1

2 < ω 6 1 [4–8].
We are interested in physical systems which do not conserve mass during coagulation.

Systems in which oxidation, melting, or evaporation occur on the exposed surface of the
particles during coagulation are typical examples. Here, the exposed surface of the particle
recedes continuously, eventually leading to a total loss of the mass of the particle. The
intention of this paper is to study coagulation with this particular type of mass loss using a
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nonlinear rate equation similar to (1.1) for such systems. The appropriate rate equation is

∂

∂t
c(x, t) = 1

2

∫ x

0
dy K(y, x − y)c(y, t)c(x − y, t)− c(x, t)

∫ ∞

0
dy K(x, y)c(y, t)

+ ∂

∂x
(m(x)c(x, t)) (1.2)

wherem(x) is a continuous mass loss rate, defined so thatm(µ(t)) = −dµ(t)/dt for a
particle of time-dependent size or massµ(t), as first introduced in work on fragmentation
by Edwardset al [9]. The third term on the left-hand side of (1.2) arises when mass is
removed continuously from particles in the system at a rate determined bym(x), through
evaporation, melting, or oxidation at the surface of the coagulating particles.

For coagulation, the structure of mass removable terms corresponding to various
processes has been given by Crump and Seinfeld [10] and Hendriks [11], using ‘sinks’. It
is of interest to investigate the effect ofm(x), a novel alternative to ‘sinks’, on properties of
the solutionc(x, t), such as critical exponents, the occurrence of phase transitions (gelation),
and so on, and see how this mass removal mechanism compares and contrasts with the usual
‘sinks’. It must be emphasized that althoughm(x) and the usual ‘sinks’ both describe mass
removal from physical systems,m(x) and ‘sinks’ differ in one important aspect. When a
‘sink’ is employed to remove mass from a system it removes mass by removing complete
particles. However, when the mass removal mechanism is implemented bym(x), mass
disappears from the particles themselves, yet the particles will still remain behind, albeit in
diminished form, in the system. This essential difference betweenm(x) and ‘sinks’ enables
one to describe mass removal processes in coagulating systems which are beyond the scope
and physical capabilities of the usual ‘sinks’.

The mass,M(t), of our system is given by

M(t) =
∫ ∞

0
dx xc(x, t) . (1.3)

Differentiating (1.3) with respect tot and using (1.2) gives

dM(t)

dt
= −

∫ ∞

0
dx m(x)c(x, t) (1.4)

before a phase transition (gelation), if it occurs, providedc(x, t) → 0 asx → ∞ sufficiently
quickly, andm(x)c(x, t) → constant asx → 0.

The mass balance equation (1.4) describes the rate at which mass is being removed from
the system before the occurrence of a phase transition. Whether equation (1.4) holds, or not,
is one important criteria which signals the occurrence of a phase transition, another being
the divergence of some higher moment of the size distributionc(x, t). In the system under
investigation the manner in which mass is removed may be adopted as a defining property
of the system. Of course, other definitions based on the rate of change of various other
moments of the size distributionc(x, t) may also be adopted. For example, the system may
be defined in terms of the rate of change of its zeroth moment, i.e. the number of particles
in the system.

When a system exhibits a phase transition one is usually interested in the behaviour of
the mass of the system before and after the phase transition. The number of particles in the
system and other higher moments of the size distributionc(x, t) are not so important. For
this reason, in our work, we choose to define a system in terms of the rate of change of its
mass, i.e. by (1.4). Bearing this in mind, it seems natural to investigate systems in which
the rate at which mass being removed from the system is proportional to the amount of
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mass present in the system. This suggests we use the following form for the mass removal
term:

m(x) = mx m > 0 . (1.5)

In which case
dM(t)

dt
= −mM(t) . (1.6)

One may also consider systems in whichm(x) = mxα, with α = 0 corresponding to a
system in which the rate of mass removal is proportional to the number of particles,M0(t),
present in the system. However, in this paper we restrict ourselves tom(x) defined as in
(1.5).

Define thenth moment,Mn(t), by

Mn(t) =
∫ ∞

0
dx xnc(x, t) . (1.7)

DifferentiatingMn(t) with respect tot and using (1.2) yields

dMn(t)

dt
= 1

2

∫ ∞

0
dx

∫ ∞

0
dy [(x + y)n − xn − yn]K(x, y)c(x, t)c(y, t)−mnMn(t) . (1.8)

2. K(x,y) = 1

In the case of constant coagulation rates, as in Smoluchowski’s original coagulation equation
[12], (1.2) becomes

∂

∂t
c(x, t) = 1

2

∫ x

0
dy c(y, t)c(x − y, t)− c(x, t)

∫ ∞

0
dy c(y, t)+m

∂

∂x
(xc(x, t)) . (2.1)

Define the Laplace transform,φ(p, t), of c(x, t) with respect tox by

φ(p, t) =
∫ ∞

0
dx e−pxc(x, t) (2.2)

in which casec(x, t) is given by the inverse Laplace transform

c(x, t) = 1

2π i

∫ γ+i∞

γ−i∞
dp epxφ(p, t) (2.3)

and Re(p) > γ to ensure convergence. It can be shown thatφ(p, t) satisfies

∂φ(p, t)

∂t
+mp

∂φ(p, t)

∂p
= 1

2φ
2(p, t)− φ(p, t)φ(0, t) (2.4)

where, of course,

φ(0, t) =
∫ ∞

0
dx c(x, t) = M0(t) . (2.5)

From equation (1.8) withn = 0 andK(x, y) = 1, one finds

φ(0, t) = M0(t) = M0(0)

(1 +M0(0)t/2)
. (2.6)

Consequently, we need to solve (2.4), subject to the initial condition

f (p) = φ(p, 0) =
∫ ∞

0
dx e−pxc(x, 0) (2.7)
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with φ(0, t) = M0(t) as in (2.6). A solution can be found via the method of characteristics
and reads

φ(p, t) = f (pe−mt )
(1 +M0(0)t/2)(1 +M0(0)t/2 − 1

2f (pe−mt )t)
. (2.8)

Thenc(x, t) may be found from (2.3).
As an example consider an initially mono-disperse distribution

c(x, 0) = δ(x − 1) . (2.9)

Then a short calculation yields

c(x, t) =
∞∑
k=1

(t/2)k−1

(1 + t/2)k+1
δ(x − ke−mt ) . (2.10)

Then using (2.10)

M(t) =
∫ ∞

0
dx xc(x, t) = e−mt (2.11)

which is a solution of the mass balance equation (1.6) withM(0) = 1. Therefore, this
model does not undergo a phase transition. It may be noted that in them → 0 limit, we
recover the solution of Smoluchowski [12].

3. K(x,y) = xy

In this case (1.2) becomes

∂c(x, t)

∂t
= 1

2

∫ x

0
dy y(x − y)c(y, t)c(x − y, t)− xc(x, t)

∫ ∞

0
dy yc(y, t)+m

∂

∂x
(xc(x, t)) .

(3.1)

From equation (1.8) the first three moment equations are

dM0(t)

dt
= − 1

2M
2(t) (3.2a)

dM(t)

dt
= −mM(t) (3.2b)

dM2(t)

dt
= M2(t)(M2(t)− 2m) . (3.2c)

The solution of (3.2c) with M2(0) = 1 is

M2(t) = 2m

(1 + (2m− 1)e2mt )
. (3.3)

There are two qualitatively distinct cases to consider here for non-zero and positive
m. If 2m > 1, M2(t) remains bounded for all times. This implies that the mass balance
equation (1.6) is valid, so that a gel never forms. If 2m < 1, however,M2(t) diverges
within a finite time,tg (gel point), at which pointM2(t) becomes singular. The gel point
corresponds to a zero of the denominator in (3.3), whence

tg = − 1

2m
loge(1 − 2m) . (3.4)

Thus, we get the formation of an infinite gel in a finite time,tg, which depends on the mass
loss term. The situation here is in contrast to the case for the purely coagulating system
where a gel forms, without fail, in a finite timetg = 1, for M2(0) = 1. We note that if
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2m > 1, the mass removal from the system is strong enough to prevent the formation of
an infinite gel cluster. If 2m < 1, the mass removal is insufficient to prevent the formation
of an infinite gel cluster, which forms in a finite timetg given by (3.4). Notice, however,
that the mass removal does slow down the process of gel formation, i.e.tg > 1. Of course,
tg → 1, asm → 0.

We now investigate each case in turn. First, define the Laplace transform,ψ(p, t), of
xc(x, t) by

ψ(p, t) =
∫ ∞

0
dx e−pxxc(x, t) . (3.5)

It can be shown thatψ(p, t) satisfies

∂ψ(p, t)

∂t
= −∂ψ(p, t)

∂p
(ψ(p, t)− ψ(0, t))−m

∂

∂p
(pψ(p, t)) (3.6)

where

ψ(0, t) =
∫ ∞

0
dx xc(x, t) = M(t) (3.7)

andc(x, t) is given by the inverse Laplace transform

xc(x, t) = 1

2π i

∫ γ+i∞

γ−i∞
dp epxψ(p, t) (3.8)

where Re(p) > γ to ensure convergence.

3.1. 2m < 1

In this case a phase transition occurs and we get the formation of an infinite gel cluster
in a finite time tg given by (3.4). Without loss of generality we will always assume that
M(0) = 1 = M2(0), which may be achieved by choosing suitable units forx, t andc(x, t).
It then remains for us to solve (3.6) subject to the initial condition

ψ(p, 0) = f (p) (3.9)

and f (0) = 1 = −f ′(0). The method of characteristics provides us with the following
solution forψ(p, t):

ψ(p, t) = e−mtf
(
pe−mt − ψ(p, t)

sinh(mt)

m
+ I (m, t)

)
(3.10)

where

I (m, t) =
∫ t

0
dτ e−mτM(τ) . (3.11)

The Laplace transformψ(p, t) is therefore given implicitly by (3.10) for any given initial
distributionψ(p, 0) = f (p).

The solution (3.10) still contains the unknown mass of the particles in the solution,
M(t) = ψ(0, t), which can be determined self-consistently by settingp = 0 in (3.10). So

M(t) = e−mtf
(
I (m, t)−M(t)

sinh(mt)

m

)
. (3.12)

Differentiating (3.12) with respect tot gives(
dM(t)

dt
+mM(t)

) (
1 + e−mt sinh(mt)

m
f ′

(
I (m, t)−M(t)

sinh(mt)

m

))
= 0 . (3.13)
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This equation has two distinct solutions for allt , provided the first singularity off (p) in
the complexp-plane with Re(p) < 0 is: (i) located at a pointp0 < 0, a finite distance
away from the origin, and (ii) has the property,f ′(0) = ∞, i.e. the initial size distribution
can be bounded by an exponential. So, we find

M(t) = e−mt t < tg (3.14)

which agrees with formal mass loss in the pre-gelation regime, and

M(t)− e−mtf
(
I (m, t)−M(t)

sinh(mt)

m

)
= 0 t > tg (3.15a)

1 + e−mtf ′
(
I (m, t)−M(t)

sinh(mt)

m

)
= 0 t > tg (3.15b)

in the post-gelation regime.
There occurs a phase transition (gelation) in a finite timetg, called the gel point, given by

(3.4). In the pre-gelation phase,t < tg,M(t) decreases exponentially with time, as expected.
In the post-gelation phase,t > tg, the loss of mass, starting att = tg, is associated with the
formation of an infinite cluster, or gel. It is a loss to infinity due to the cascading growth
of larger and larger clusters.

Consider again the mono-disperse initial distributionc(x, 0) = δ(x− 1). Then it can be
shown that

M(t) =


e−mt t < tg
m

sinh(mt)
t > tg

(3.16)

and

M0(t) =


M0(0)+ 1

4m
(e−2mt − 1) t < tg

m

2
coth(mt)+M0(0)− 1 + m

2
t > tg .

(3.17)

In them → 0 limit, these results reduce to those of Ernstet al [13]. Notice that for larget
M(t) ∼ e−mt , in contrast to [13], whereM(t) ∼ 1/t for large t . This means that after the
phase transition has occurred the rate at which mass is removed from the system above is
faster than that in [13], which is consistent with expectations of a system which includes a
mass removal mechanism.

We are now in a position to derive the general expression for the size distributionc(x, t),
valid for all times using (3.8). First, introduce a new integration variableξ defined by

emtψ(p, t) = f (ξ) p = emt
(
f −1(ψ(p, t)emt )+ ψ(p, t)

sinh(mt)

m
− I (m, t)

)
.

(3.18)

Then equation (3.8), after two integrations by parts with vanishing boundary terms, yields

c(x, t) = me−xJ (m,t)

(2π i)x2 sinh(mt)

∫ γ+i∞

γ−i∞
dξ ex(e

mt ξ+f (ξ) sinh(mt)/m) (3.19)

where

J (m, t) = emtI (m, t) . (3.20)

The contour is a straight line to the right of all singularities inf (p). Equation (3.19)
represents the solution of our coagulation equation for all times, andJ (m, t) is given
accordingly, depending on whethert < tg or t > tg.
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As our first example, suppose

c(x, 0) = e−x

x
. (3.21)

Then,

ψ(p, 0) = f (p) = 1

(1 + p)
. (3.22)

In which case (3.19) gives

c(x, t) = m1/2e−mt/2−xemt−xJ (m,t)

x2(sinh(mt))1/2
I1

(
2emt/2

(
sinh(mt)

m

)1/2

x

)
(3.23)

where

J (m, t) =


sinh(mt)

m
t < tg

emt
(

1 +m1/2
∫ t

tg

du
e−3mu/2

(sinh(mu))1/2

)
t > tg

(3.24)

M(t) =


e−mt t < tg

m1/2e−mt/2

(sinh(mt))1/2
t > tg

(3.25)

andI1(2x) is the modified Bessel function defined by

I1(2x) = 1

2π i

∫ γ+i∞

γ−i∞
dp ex(p+1/p) . (3.26)

Returning to (3.19), we may re-write this expression forc(x, t) as a power series,
namely,

c(x, t) = me−xJ (m,t)

x2 sinh(mt)

∞∑
k=0

1

k!

(
x sinh(mt)

m

)k ∫ γ+i∞

γ−i∞

dξ

2π i
exemt ξ (f (ξ))k (3.27)

which is a convenient form to illustrate our next example.
Suppose, we have a mono-disperse initial distributionc(x, 0) = δ(x− 1). Then we find

thatM(t) andM0(t) are as given above by (3.16) and (3.17), respectively, and

c(x, t) = me−mt−xJ (m,t)

x2 sinh(mt)

∞∑
k=1

1

k!

(
x sinh(mt)

m

)k
δ(x − ke−mt ) (3.28)

where

J (m, t) =


sinh(mt)

m
t < tg

emt
(

1 + loge

(
e2mt − 1

e2mtg − 1

)
− 2m(t − tg)

)
t > tg .

(3.29)

We conclude this subsection with a brief derivation of the behaviour ofc(x, t) at large
x. It may be noticed that the integral representation (3.19) forc(x, t) is most convenient
for obtaining the asymptotic behaviour ofc(x, t) at largex, using the saddle-point method.
To obtain an asymptotic expression for (3.19) chooseγ such that

F(ξ) = emtξ + sinh(mt)

m
f (ξ) (3.30)
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is at a maximum when the contour crosses the real axis. Then,γ is determined by

F ′(γ ) = emt + sinh(mt)

m
f ′(γ ) = 0 . (3.31)

Observe that (3.31) is equivalent to (3.15b). Consequently, using (3.15a) gives

M(t) = e−mtf (γ ) t > tg . (3.32)

ExpandingF(ξ) aboutγ with ξ = γ + iy, and deforming the contour to ensure that it
passes through the saddle point atξ = γ with Re{F(ξ)} largest atξ = γ and Im{F(ξ)}
constant in the neighbourhood ofξ = γ gives

c(x, t) ∼
(

m3

2π sinh3(mt)f ′′(γ )

)1/2
1

x5/2
e−x(J (m,t)−F(γ )) (3.33)

asx → ∞. It can readily be shown that fort < tg,

ξ0 = J (m, t)− F(γ ) = sinh(mt)

m
(1 − f (γ ))− emtγ (3.34a)

ξ̈0 −m2ξ0 = m3

sinh3(mt)f ′′(γ )
(3.34b)

and for t > tg

ξ0 = J (m, t)− F(γ ) = 0 (3.35a)

m3

sinh3(mt)f ′′(γ )
= −Ṁ(t)−mM(t) . (3.35b)

Hence, we now have,

c(x, t) ∼


(
ξ̈0 −m2ξ0

2π

)1/2

x−5/2e−xξ0 t < tg(−(Ṁ(t)+mM(t))

2π

)1/2

x−5/2 t > tg

(3.36)

as x → ∞. From which we deduce that for all times past the transition time,tg, the
mass spectrum has a universal shapex−τ , whereτ = 5

2, independent of the initial size
distribution. Equation (3.36) is also very useful for analysing the behaviour ofc(x, t) as
x → ∞, near the gel pointtg.

It follows from equation (3.19) that the behaviour ofc(x, t) at larget and fixedx is
similar to that at largex and fixed t with t > tg. One only needs to insert the larget
behaviour ofM(t) for t > tg, from (3.15a) and (3.15b). Of course, in them → 0 limit,
the results presented in this subsection reduce to those obtained for the pure Smoluchowski
equation withK(x, y) = xy [13].

3.2. 2m > 1

In this case a phase transition does not occur, i.e. a gel never forms, and it can readily be
shown that the first three momentsM0(t), M(t), andM2(t) are given by

M0(t) = M0(0)+ 1

4m
(e−2mt − 1) (3.37a)

M(t) = e−mt (3.37b)

M2(t) = 2m

(1 + (2m− 1)e2mt )
(3.37c)
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and the problem is reduced to solving the following partial differential equation

∂ψ(p, t)

∂t
= −∂ψ(p, t)

∂p
(ψ(p, t)− e−mt +mp)−mψ(p, t) (3.38)

subject to the initial condition

ψ(p, 0) = f (p) (3.39)

with f (0) = −f ′(0) = 1.
A calculation of the type performed in subsection 3.1 gives

ψ(p, t) = e−mtf
(
pe−mt − ψ(p, t)

sinh(mt)

m
+ e−mt sinh(mt)

m

)
. (3.40)

Therefore, as above, the Laplace transformψ(p, t) is given implicitly by (3.40) for any
given initial distributionψ(p, 0) = f (p).

We are now in a position to determinec(x, t) via (3.8), obtaining, as in subsection 3.1,

c(x, t) = me−x sinh(mt)/m

(2π i)x2 sinh(mt)

∫ γ+i∞

γ−i∞
dξ ex(e

mt ξ+sinh(mt)f (ξ)/m) (3.41)

where, again, the contour is a straight line to the right of all singularities inf (p).
Equation (3.41) represents the solution of our coagulation equation with mass loss for
all times for any given initial distributionψ(p, 0) = f (p), and 2m > 1.

Expanding (3.41) as a power series, we obtain

c(x, t) = me−x sinh(mt)/m

x2 sinh(mt)

∞∑
k=0

1

k!

(
x sinh(mt)

m

)k ∫ γ+i∞

γ−i∞

dξ

2π i
exemt ξ (f (ξ))k . (3.42)

As an example consider a mono-disperse initial distributionc(x, 0) = δ(x − 1). Then
it is easily shown that

c(x, t) = me−mt−x sinh(mt)/m

x2 sinh(mt)

∞∑
k=1

1

k!

(
x sinh(mt)

m

)k
δ(x − ke−mt ) . (3.43)

Furthermore, as shown in subsection 3.1, the integral representation (3.41) forc(x, t) readily
yields an asymptotic expression forc(x, t) asx → ∞. As above, chooseγ to be such that
(3.30) is at a maximum when the contour crosses the real axis. Then,γ is determined by
(3.31). By expandingF(ξ) aboutγ , and writingξ = γ + iy, we find

c(x, t) ∼
(

m3

2π sinh3(mt)f ′′(γ )

)1/2
1

x5/2
e−x sinh(mt)/m+xemt γ+x sinh(mt)f (γ )/m (3.44)

asx → ∞.

4. The coagulation rateK(x,y) = (xy)ω

The coagulation rateK(x, y) = xy represents a reaction rate for coagulating particles which
is proportional to their volumes. In many types of reaction the effective surface area of
the particles determines their reaction rate, in which case one requiresK(x, y) ∼= (xy)2/3.
Further examples of coagulation ratesK(x, y) for specific coagulation processes can be
found in [14, 15]. Here we will restrict ourselves to the study of a coagulation process in
which the coagulation rateK(x, y) is of the form

K(x, y) = (xy)ω ω 6 1 . (4.1)
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Thus, coagulation ratesK(x, y) which are proportional to the volumes and surfaces areas
of the reacting particles are included in (4.1). Smoluchowski’s coagulation equation with
mass loss term (1.2) now takes the form

∂c(x, t)

∂t
= 1

2

∫ x

0
dy [y(x − y)]ωc(y, t)c(x − y, t)− xωc(x, t)

∫ ∞

0
dy yωc(y, t)

+m ∂

∂x
(xc(x, t)) . (4.2)

When m = 0, it is well known that for 1
2 < ω 6 1 a phase transition occurs within

a finite time tg [13]. As shown above, a phase transition occurs forK(x, y) = xy and
m(x) = mx(m > 0) in a finite time tg given by (3.4), providedm is restricted to certain
values. Thus, choosingm carefully gives one the option of preventing the onset of gelation.
We suspect this to be the case forK(x, y) = (xy)ω as well, and we therefore investigate
howm affects gelation in this case.

UsingK(x, y) = (xy)ω in (1.8) gives the first three moment equations in the form

dM0(t)

dt
= − 1

2M
2
ω(t) (4.3a)

dM(t)

dt
= −mM(t) (4.3b)

dM2(t)

dt
= M2

1+ω(t)− 2mM2(t) . (4.3c)

If c(x, t) is non-negative we may write

M1+ω(t) 6 Mω
2 (t)M

ω−1(t) . (4.4)

Before gelation,M(t) = e−mt (M(0) = 1), consequently, (4.3c) and (4.4) yield

dM2(t)

dt
6 M2ω

2 (t)e−2m(ω−1)t − 2mM2(t) . (4.5)

From which it follows that a phase transition will occur if and only ifω > 1
2. So, as with

the case of a purely coagulating system, i.e.m = 0, a phase transition (gelation) occurs if
and only if

1
2 < ω 6 1 . (4.6)

We now present a brief account of the theory for the above coagulation rateK(x, y) =
(xy)ω, and show that the size distributionc(x, t) at and beyond the gel pointtg has the
asymptotic power law

c(x, t) ∼ Ax−τ (4.7)

asx → ∞, with exponentτ = ω+ 3
2 and time-dependent amplitudeA. This behaviour can

be found by studying the smallp behaviour of the Laplace transform of the distribution
function. We introduce,

ψ(p, t) =
∫ ∞

0
dx e−pxc(x, t) (4.8a)

φ(p, t) =
∫ ∞

0
dx e−pxxωc(x, t) . (4.8b)

It is then possible to show thatψ(p, t) and φ(p, t) are related by the partial differential
equation

∂ψ(p, t)

∂t
+mp

∂ψ(p, t)

∂p
= 1

2
φ2(p, t)− φ(p, t)Mω(t) (4.9)
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where

Mω(t) =
∫ ∞

0
dx xωc(x, t) . (4.10)

From equation (4.9) we find

φ(p, t) = Mω(t)−
[
M2
ω(t)+ 2

(
∂ψ(p, t)

∂t
+mp

∂ψ(p, t)

∂p

)]1/2

(4.11)

where the solution of (4.9) with the minus sign is taken sinceφ(p, t) is a decreasing function
of p.

In this case we can write, for smallp,

ψ(p, t) = M0(t)− pM(t)+ ε(p, t) ε(p, t) = O(p) (4.12a)

φ(p, t) = Mω(t)+ δ(p, t) δ(p, t) = O(1) (4.12b)

sinceM0(t) < Mω(t) < M(t) < ∞, as the total mass in our system must be finite. A short
calculation, with the aid of (4.3a), now produces,

φ(p, t) ∼ (−2Ṁ0(t))
1/2 − (−2(Ṁ(t)+mM(t)))1/2p1/2 (4.13)

asp → 0. Here,Ṁ(t)+mM(t) 6= 0, i.e. formal mass balance does not hold in the post-gel
regime. Then inverting (4.13) gives,

c(x, t) ∼
(−(Ṁ(t)+mM(t))

2π

)1/2

x−ω−3/2 (4.14)

as x → ∞. Thus, we have determined the behaviour ofc(x, t) for large x past the gel
point tg, where

Ṁ(t)+mM(t) 6= 0 (4.15)

and have expressed the time-dependent amplitude,A, in terms of the unknown mass loss
rate. The behaviour of (4.14) must be consistent with the requirements on the existence of
the moments in (4.12). ForM(t) to be finite we must haveω > 1

2.
Although it has been shown that the mass removal term does not affect the values ofω

for which a phase transition occurs, it does affect the time at which these phase transitions
(gelations) occur, if and when they occur, for certain values ofm.

For K(x, y) = (xy)ω with ω restricted by (4.6), we have not been able to solve for
c(x, t), or find the value oftg at which a phase transition occurs. However, we have been
able to calculate a least upper bound fortg, which reads

tg 6 1

2m(1 − 2ω)
loge

(
1 − 2mM1−2ω

2 (0)
)
. (4.16)

SettingM2(0) = 1, as usual, gives

tg 6 1

2m(1 − 2ω)
loge(1 − 2m) . (4.17)

Again a phase transition only occurs, for a given value ofω, if 2m < 1. It is easily
verified that the results of this section, in them → 0 limit, reduce to those obtained from
an investigation of the analogous case with the pure Smoluchowski equation [13].
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5. Conclusions

In this paper we introduce a continuous mass removal term,m(x), which is a novel
alternative to the usual ‘sinks’ [10, 11]. As stated in the introduction, we stress more
forcefully here, the distinction between the mass removal process discussed in this paper
and the usual ‘sinks’ is as follows. A ‘sink’ would remove complete particles from the
system, whilst the continuous mass loss process considered here removes mass from the
particles themselves, yet leaves these particles behind in the system. We have investigated
the effect of this mass removal term on the coagulation process. For a constant coagulation
rate K(x, y) = 1 andm(x) = mx, with m > 0, we present an exact solution to the
coagulation problem with mass removal for arbitrary initial distributions, which reduces
to the solution of Smoluchowski [12] in them → 0 limit. When K(x, y) = xy and
m(x) = mx, with m > 0, we have obtained an exact solution of the coagulation problem
with mass removal for arbitrary initial distributions. In this case we also show that when
m < 1

2 a phase transition occurs in finite timetg, given by (3.4), and a gel forms. When
m > 1

2, a phase transition does not occur, and we do not get gelation. Similar results
are obtained in [11] using ‘sinks’, where it is shown that if the mass removal process, i.e.
‘sink’, is sufficiently strong gelation never occurs. The situation here is in contrast to the
case for a purely coagulating system where a phase transition always occurs, and a gel forms,
without fail, in a finite timetg = 1. We have demonstrated that if the mass removal term is
sufficiently strong, i.e. whenm > 1

2, the occurrence of a phase transition may be prevented.
Even when the mass removal term is relatively weak, i.e. whenm < 1

2, the onset of the
phase transition is slowed down. We have also determined explicitly the mass,M(t), of the
particles in the solution both before and after the gel pointtg as in (3.14) and (3.15). We
have illustrated our results with some examples using various initial distributionsc(x, 0).

For arbitrary initial distributions we have determined the behaviour ofc(x, t) asx → ∞,
both before and after the gel pointtg. We show that the mass spectrum is exponentially
cut-off for t < tg, and has an algebraic tailx−5/2 for t > tg which is universal. The solution
of (1.2) whenK(x, y) = xy and 2m > 1, for arbitrary initial distributions, when a phase
transition does not occur and mass balance holds, is also presented along with the behaviour
of c(x, t) for largex.

Finally, an investigation intoK(x, y) = (xy)ω with m(x) = mx, (m > 0), reveals that
a phase transition occurs in a finite timetg if and only if 1

2 < ω 6 1 and 2m < 1. Thus,
the presence of the mass removal term does not affect the values ofω for which a phase
transition is possible. In this case it is also demonstrated that in the post gelation regime
c(x, t) ∼ Ax−τ , for largex, whereτ = ω + 3

2 and the amplitudeA depends onM(t). As
we were unable to determinetg explicitly, an estimate fortg based on the least upper bound
is calculated.

The technical nature of the subject of our paper, unfortunately, has the effect of making
the consequences of our equations obscure. We therefore consider some of the equations
in this paper in an attempt to clarify their meaning and also provide an insight into the
meaning of other equations presented here. Consider, for example (2.10). The meaning
of (2.10) is fairly simple, namely that the concentration of particles having undergone
k collisions is the same as in the case of the pure Smoluchowski equation [12] as a
function of k. The reason why the concentration is the same as that in the analogous
pure Smoluchowski case is that the particles are colliding, and therefore coagulating, at
a constant rate(K(x, y) = 1) independent of their sizes or masses. Consequently, the
continuous mass loss from the particles cannot possibly influence the coagulation process
via the reaction rate(K(x, y) = 1), and hence the concentration of particles which have
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undergonek collisions is unaffected. However, the mass contained within the particles has
diminished as a consequence of the mass loss process. It is interesting to note that particles
which have undergone a large number of collisions, i.e.k is large, contain very little mass.
This is a manifestation of the fact that by the time the concentration of such particles has
become appreciable, their mass has already become negligible. This last remark is even
more relevant to the case where a phase transition (gelation) occurs, namely in the case
described by (3.28) and (3.29). Here, we have a loss of mass from the system to an
infinite gel cluster, in addition to the continuous loss of mass from the particles themselves.
Now consider (3.28) and (3.29). In this case, the concentration of particles which have
undergonek collisions is not the same as in the analogous case of the pure Smoluchowski
equation [13]. This difference is due to the fact that two colliding particles, apart from
coagulating at a rate which depends on the product of their sizes or masses(K(x, y) = xy),
are now also continuously losing mass at a rate which depends on their size or mass as
they coagulate. Consequently, the continuous mass loss from the particles can influence the
coagulation process via the reaction rate(K(x, y) = xy), and hence the concentration of
particles which have undergonek collisions is different. Again, as in the case described by
(2.10), the mass contained within the particles which have undergonek collisions has also
diminished as a direct consequence of the continuous mass loss process. Finally, consider
(4.14). In contrast with the analogous pure Smoluchowski case [13], the size distribution
c(x, t) at and beyond the gel pointtg has a time-dependent amplitudeA which now depends
on the (unknown) massM(t) as well as the (unknown) mass loss rate dM(t)/dt . This is
perfectly reasonable. The dependency ofA on dM(t)/dt is due to the loss of mass to the
infinite gel cluster and the dependency ofA on M(t) is due to a continuous loss of mass
from the particles themselves. Again, we state that taking them → 0 limit of the work
presented in this paper reduces to the results presented in [12, 13] for the analogous pure
Smoluchowski equation, as expected and required.

In this work we have restricted ourselves exclusively tom(x) = mx, with m > 0, which
represents a mass removal process in which the rate at which mass being removed from
the system is proportional to the amount of mass already present in the system. It would
be interesting to see howm(x) = m, with m > 0, affects the coagulation process. Here,
we have a mass removal process in which the rate at which mass being removed from the
system is proportional to the number of particles (clusters) already present in the system.
Indeed, it would be worthwhile to investigatem(x) = mxα, in general. The inclusion
of a ‘source’ term in (1.2) would allow for the possibility of steady-state solutions. It
would be interesting to investigate the nature of these steady-state solutions and see how
these results compare with the well known work of White [14] and Crump and Seinfeld
[15]. Furthermore, it would also be instructive to compare general solutions of (3.1) with
a ‘source’ term with those of Hendriks and Ziff [16], where the usual ‘sources’ and ‘sinks’
are considered. We propose to investigate these issues in subsequent work.
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